ETH

Eidgendssische Technische Hochschule Ziirich Chair for Mathematical Information Science
Swiss Federal Institute of Technology Zurich Prof. Dr. H. Bolcskei

Marco Milanta

Degeneration phenomenon for
quantized neural networks

Abstract

Neural networks as a tool to parametrize functions have been widely stud-
ied. One important property of a good parametrization is that it cannot be highly
redundant. While for some activation functions we know [1] that the neural net-
work’s parametrization are almost unique, for ReLU the problem is much harder,
and redundant parametrization seem to appear everywhere. In this paper we ap-
proach the problem on a slightly different point of view, and we find that such
redundancies are actually very rare for deeper networks.

1 Notation

Here we will use #A to denote the cardinality of the set A.

For the asyntotical behavior we will use the Bachmann-Landau big-O notation.

f(n) € O(g(n)) < Ik > 0Ing¥Vn > ng : |f(n)| < k- g(n)
f(n) € B(g(n)) < Jk; > 03ky > 0IngVn > ng : k1 - g(n) < f(n) < ks - g(n)
f(n) € Qg(n)) < 3k > 03ng¥n > ng : f(n) > k- g(n)

1.1 Neural networks

For neural networks we will use the following notation

Definition 1. (Neural network). We call an ordered sequence
b = (No,Dy,...,Dp, Wy, 6y, W5,04,...,W,05)

a neural network, where



L is an integer, referred to as the depth of N

(Do, ...,Dp)isa (L + 1)-tuple of integers called layout

W, € RPexPe-1 ¢ € 1 L, are matrices so-called weights

0, € RPt ¢ € 1: L, are vector so-called biases
Now, we define the main properties of a neural network:

Definition 2. (Depth, width and connectivity) Given a neural network
@ - <N0, Dl7 ceey DL, W1,017W2,027 ceey WL70L)

* We call depth of ®
L(P):=L

» We call width of ®
W(P) := max Dy

£€0:L

* We call connectivity of ®

L ¢ Dy_q
M(@) = Z (H[edﬁéo +> H[Wdi,ﬂéo)

/=1 =1 7=1
Which is simply the number of non-zero parameters.

To move from the space of neural networks to the space of functions we use the con-
cept of realization.

Definition 3. (Neural network realization). Given a function p : R — R, referred to as
activation function, and a neural network ® we define a map ()" =: RP0 — RPL gjven by

(®Y = Apopo A 1opo---0Ay0po A

Where A¢(x) = Wiz + 05,0 € 1 : L. And where p acts on vector in a component wise fashion.

2 Introduction

When we think about neural networks as a way to parametrize a high variety of func-
tions we would like to make sure that each different neural network realizes a differ-
ent function. If we think about it, however, it’s trivial that just swapping nodes will
not make any difference, hence the parametrization is redundant. But not all hope
is lost: [1] found that, for some activation functions, excluding permutation of nodes

within the same layer, we can make sure that our function parametrization is unique.
But the result doesn’t hold for ReLU.

ReLU networks are much harder to cope with. It is easy to find neural networks with
different depth, width and weights which still realize the same function.

2



Figure 1: f function

For instance one can notice that any ReLU network, can also be realized by a depth 2
ReLU network. This is because any ReLU network will realize a continuous piecewise-
linear function, and such functions, can always be realized by ReLU neural networks
with one hidden layer.

This, non-uniqueness goes beyond the one hidden layers example. What makes the
problem tricky for ReLU networks is that the breakpoints (angular points of the piecewise-
linear) can be “realized” by different nodes. To visualize this we can look at this ex-
ample. Let f : R — R be the function in Figure 1. This function can be realized with at
least those three networks @, ¢, O3

Py (x) = p(r) = 2p(x — 1) + p(x — 2) + p(x — 4) — 2p(x — 4) + p(z — 6)

1 0
1 —1
=[1 -2 11 -2 1]p 1x+ :i
1 -5
_1_ __6_
Py(x) = p(p(z) = 2p(x — 1)) + p(p(x — 4) — 2p(x — 5))
1 [ 0
1 -2 0 0 1 -1
=1 1p [0 0 1 —z}p 1|7 |4
1 |5
Ps(x) = p(p(z) = 2p(x — 1) + 2p(z — 3) — 2p(z — 4))
1 0
=p|[1 -2 2 —2]p 1 T+ :;
1 -5

The figure 3 shows a schema of those networks.

In this example ®, is the 1-hidden layer realization of f as mentioned above. In an
intuitive way we might say that in ®; every node realizes a different breakpoint. ®
generates some breakpoints in deeper nodes, and, finally ®; even generates the break-
points in 2,4 and 6 together in one node.

This example is to show that different neural networks with the same realization can
widely vary in shape. We may guess that it is very hard, or even impossible, to give
a simple condition under which we have uniqueness as was done in [1] for other acti-
vations



q)l (1)2 @3

Figure 2: In this schema we indicate with a line all the weights which
are not 0. Those are the schemas of ¢, ®,, ¢35, the three different
ReLU networks that realize f

3 Problem

We have understood why the uniqueness problem for ReLU networks is very hard.
What can we do then? A slightly different approach to understand weather neural
networks are a reasonable way to parametrize a function space is to count how many
different functions we can realize compared to how many neural networks we are
using to realize them. We then see weather the number of neural networks is much
larger than the number of functions or if they are somehow similar.

Of course we have infinitely many neural networks that can realize infinitely many
functions, but this is not very interesting. To make the problem more reasonable we
look at a finite subset of neural networks. To do so, we first need to quantize weights:
let’s define the following quantization

Q) :={27"N: N € Z with |[N| <2*"" 1}

Where a and b are two parameters to tune the quantization precision and the interval
of values covered.

The choice of quantizing the weights is quite natural since it is what happens in com-
puter implementations. Furthermore, quantized neural networks, together with their
approximation performance, have been extensively studied in [2] and have proven to
be a good tool to study neural networks.

To have a finite set of networks we also need the size of the neural network to be finite.
For this we need

Definition 4 (Family of networks). Given two integers a and b we define:
N? = {neural networks ® which have weights in Q},}
Furthermore, given two other integers L, W we define:

NAL=LW=W):={deN|L(®P) <L, W) <W}

4



Now one can easily see that #N(L = L, W = W) < co. But how many functions can
we realize with networks in N?(£ = L, W = W)? To make this question rigorous we
define

FoL=LW=W)={(@" o e N(L=LW=W)]

Note that the notation (f >ReLU

function.

We are now interested in the scaling behavior of log #N?(£ = L,W = W) and log #F2(L =
LW = W) with regard to W and L. If log#F’(L = L,W = W) scales slower than
log #N2(L = L,W = W) we will say that there is a degeneration phenomenon.

stands for the realization of f with the ReLU activation

One way to check weather our strategy is reasonable or not is by looking at the prob-
lem for neural network with activation functions as in [1], where we already know that
permutation of rows is the only source of non-uniqueness. In such neural networks
we have found that there is no degeneration phenomenon for network with L > 4.
This result can be found in appendix D. Since we consider the case where only the
permutation of nodes are allowed a well-behaving case, and in this case there is no
degeneration: this gives us hope that the degeneration phenomenon is a good tool to
study the redundancy of the parametrization.

4 Main result

We managed to find the scaling behavior of log #F°(£ = L,W = W) and log #N?(L =
L, W = W) in many different settings. All these results are proven in the appendixes

4.1 Fixing the width

The first simple case is when we fix IV to be any value equal to or larger than 1, and
we look at scaling behavior with regard to L. In this case we have shown that there is
no degeneration phenomenon. Formally we have the following theorem

Theorem 1 (Scaling of depth). for any W > 1:
o log#N2(L=LW=W)eO(L)
o log#F(L=LW=W)e€O(L)

4.2 Fixing the depth

The problem becomes much harder when instead we fix L and look at the scaling
behavior with regard to V. In this case we will have a degeneration phenomenon for
L = 2,3. And we will not have it for L > 5. Whether it degenerates for L = 4 or not is
still an open question. Formally we have the following theorem

Theorem 2 (Scaling of width). Depending on the depth L we have the following scaling with
regard to the width W':



log #N2(L = LW = W) log #F2(L =L,V =W)

L=2 o) O(log W)
L=3 o(W?) O(WlogW)
L=4 o(W?) 77
L>5 o(W?) o(W?)

4.3 Scaling with the connectivity

Finally, we have investigated those neural networks where we don’t require the width
or the depth to be bounded, but the connectivity.

Definition 5 (Family of networks with bounded connectivity). Given an integer M we
define:

NEM = M) == {® e N? | M(®) < M}
Fo(M = M) = {(@)"" | @ e NI (M = M) |

Where we remember that the connectivity M(®) indicates the number of non-zero
parameters.

Such, so called “sparse”, networks have been the main focus of [2], where they have
shown to be able to approximate well a wide variety of functions. We are happy that
we could prove that also these networks don’t degenerate. Formally:

Theorem 3 (Scaling of connectivity). For any value a, b:
* log #F°(M = M) € O(Mlog M)
o log#NP(M = M) € O(M log M)

5 Conclusion

The problem of equivalent ReLU networks is hard and far from solved. Assuming
that as long as there is no degeneration phenomenon the redundancy problem is not a
real issue, we have found a good set of constraints in which the neural networks are a
good tool parametrize functions.

Furthermore, our paper gives yet another theoretical evidence on deeper networks
performing better than shallow ones (L < 3 or 4). However, we found very interesting
that if L > 5, scaling the width, no degeneration occurs. This suggests that there
might be a radical difference in approximation ability from shallow networks and not-
so-shallow ones. An investigation in this direction might also be interesting.



Bibliography

[1] V. Vlaci¢ and H. Bolcskei, “Neural network identifiability for a family of sigmoidal
nonlinearities,” 2020.

[2] H. Boleskei, P. Grohs, G. Kutyniok, and P. Petersen, “Optimal approximation with
sparsely connected deep neural networks,” 2018.

A Fixing the width

Proof of Theorem 1. We divide the theorem in two main steps and a third step for the
conclusion:

Step 1: (Scaling of the number of networks) Here we want to show that the log-
cardinality of N?(L£ = L,W = W) scales like O(L).

To show this it suffices to notice that the number of parameter to describe a single lin-
ear application of a neural network of width W is no more than W? + W: W? param-
eters will be for the linear application and W for the bias. From this, simply follows
that the number of parameters in a neural network of depth < L and width < W is no
more than (W2 + W)L. If all the parameter are picked from Q? than we have that

HNE(L = LW =W) < (#Qh) WL,
Hence, if we take the logarithm, and we look at the scaling with L we get

log #NP(L =L W =W) < ng2 + W) log #@g € O(L).

~
doesn’t depend on L

Step 2: (Scaling of the number of realizations) Here we want to show that the log-
cardinality of log #F°(L = L,WW = W) scales at least like Q(L). To do so we find S(L),
a subset of log #F2(L = L, W = W) whose cardinality still scales like Q(L).

To make the proof more clear we assume that W > 2. The proof for W = 1 is less
intuitive and will be presented later. We now define ®; as in the schema below:

— weight =1
— weight =2



L layers

input

output
©, O

Of course the ®y(x) = 0 Va. Now let b € {0, 1}X7!, we then define. We then set at first
¢, = ®(. Then, for all 7 such that b, = 1, we add a weight of magnitude 1 between the
i-th node in the first row of ®, and the i + 1-th node in the second row as in the figure
below:

input )
o 0 cee O———0——0
: output
cee O O
1+ 1
The final result is that

Oy(z) = <§ I(b; = 1)2i_1> ReLU(z).

i=1

Since (Zf;ll I(b; = 1)2i‘1> is the number which has b as binary representation, then

we have that:
by % by = (I)bl % (I)b2

Hence, the cardinality of all possible ®; is no less than the cardinality of all possible b,
which is 2471, From this follows that

log #F2(L =L, W =W) >log2""! = Llog2 +log2 € Q(L).

Step 3: (Conclusion) Finally, since the number of all possible realization is smaller
than then number of all the neural networks we have intuitively that

Q(L) < log #FY(L = LW = W) < log #N(L = LW = W) < O(L).

Formally, we have:
o log#F(L=LW=W)e€O(L)
o log#NP(L=LW=W)e©O(L)
O
As mentioned before, one weakness of this proof is that the ®, have width 2. Therefore,
our proof only works if W > 2. We can also show that the result holds W = 1, however

the construction is not as straightforward, and therefore we decided not to include it
in the main proof.



Construction with W = 1: The construction uses the same idea of b € {0,1}71.
Now, however, ¢, only have one row where we set all weights to be equal to 2. The
bias of layer ¢ will be —1 if b; = 1, 0 otherwise.

We claim that the network @, has a unique breakpoint z

The proof of this just require a visualization of intermediate layers of ®,. What is most
relevant is that 7" (b, = 1)277 is still uniquely determined by b, therefore we can
use this new set of @, instead of the one in the proof without any difference.

B Fixing the depth

In this section we tackle the proof of theorem 2. We will decompose the theorem in
many prepositions and then look at one problem at the time.
Proof of Theorem 2. The proof of the problem is decomposed as follows:

e In preposition 1 we compute the scaling of the log-cardinality of N?(£ = L, W =
W) on W with all different values of L.

¢ In preposition 2 we show that log #F2(L = 2,WW = W) € O(log W)

e In preposition 3 we show that log #F°(L =3, W = W) € O(W log W)

e In preposition 4 we show that log #F2(L =5 W = W) € O(W?)
Of course one can always add an identity layer at the end of a network, hence, if L > 5
we will still have that F2(£L =5 W = W) € O(W?) O
Preposition 1 (Scaling of V).

W  L=2

log AN (L=LW=W) =
og #N ( ) {W2 L3

Proof. In the case L = 2 Than our neural network can be written as

w
O(x) =) cReLU(asr + by).

i=1

We only have as parameters a;,b;,c; with ¢ = 1,...,W. Hence, the total number of
parameter is 31//. We than have that

log #N2(L =2,V = W) = log(#Q})* = 3W log #Qf, € O(W).

9



If instead L > 2, in the intermediate layers, there will be linear applications from W to
. Such applications are parametrized with W? parameters. Hence, we have that

L>3=log#N2(L = LW =W) =log(#Q}) """ = (L — )W log #Q’, € O(W?).
O

To prove preposition 2 and 3 we make use of the following lemma

Lemma 1. Given a vector space X, given G = {gz}i(.f finite subset of X, M € N. For any
discretization Q° we call

M
Fb= {Zai:pi | a; € Q4 2; € G}.
i=1

Then we have that
#F! < min {(24QLHG)M, (24QLM)#C}

Proof. The fact that #F° < (2#Q°#G)M can be simply found counting the number of
parameters in F.

To find the other bound we define
#G
Qg = {Zaigi | a; € SZ(M)vgi € G}
i=1

Where S%(M) := {ba; | b€ 1,..., M, a; € Q%}. One can notice that 2 C G°.

Furthermore, we know that in Q? values are equispaced and 0 € Q?, hence we have
that #S2 (M) = M#Q®. Counting parameters we can conclude that

LT < #GP < (2#QEM)*E.

Preposition 2 (Scaling with L = 2).
log#F2(L=2W=W) € O(logW)

Proof. Since we need to find a ©-scaling, we need both the lower and the upper bound.

Step 1: (upper bound) To find a lower bound we start by considering
Gi:={z €R—ReLU(dz +e¢) |d,ecQ’}.

Since a and b are the only parameters, it’s easy to notice that #G; = (#Q%)2. Now one
can rewrite

W+1
FoL=2W=W)= {Zaif,-|aie@g,fi€G1}.

=1

10



Now, thanks to lemma 1, having M = W + 1 and G = G, we get that
#FAL =2V =W) < #Q(W + 1)*% = Q#QLV + 1)) #",
Finally if we look at the log-cardinality we can get the desired bound:
log #F2(L =2, =W) = (#Q°)log (2#Q.) log(W + 1) € O(log W)

N J/

Vv
doesn’t depend on W

Step 2: (lower bound) to find a lower bound we just need to notice that the function
below can be realized with a network in N?(£ =2, W = W):

K
{ZaReLU(bx) = KaReLU(bz) | K €1,...,M,a,b € @f;} CFAL=2,W=W)
=1

Of course, even in this subset we can have W different functions (K = 1,...,W).
Therefore #F°(L = 2,W = W) > W. Therefore, looking at log-cardinalities

log #F2(L =2, W =W) € Q(logW).
Having found both a lower and an upper bound we have proven that
log #F2(L =2, W =W) € O(logW).

Note: before concluding the proof we notice that no properties of the ReLU function
where exploited, hence, the proof also holds for any other activation function. O

Preposition 3 (Scaling with L = 3).
log#Fo(L =3 W=W)cO(WlogW)

Proof. Since we need to find a ©-scaling, we need both the lower and the upper bound.

Step 1: (upper bound) To find this bound we start by considering
Gy:={x €R—=ReLU(f(z)) | f€ FAL=3W=W)}.

The cardinality of Gy is of course the same of F'(£ = 2, W = W), using the bound we
have found in the proof of preposition 2, we can bound #G:

#Gy < (2#QL(W + 1)) #Q)*

Now one can write
W1
}"j(ﬁ:B,W:W) e {Z ai, fi | a; € QZ?fi € Gz}-
=1
We can finally use lemma 1 with M = W + 1 and G = G to get
HFUL =3, W =W) < Q#QL#G)" ! = 24Qh)" ! 2#QL(W + 1)) #FE WD),

Looking at the log-cardinality we get

log #FL(L =3, W =W) < (W +1)log(2#Q") + (W + 1)(#Q%)*(log 2 + log #Q’, + log(W + 1))
€ O(WlogW).

The second row follows from the fact that W log W is the dominating term.

11



Step 2: (lower bound) To find a lower bound we start by fixing a d > 0 € Q. Now
we can look at

M
H = {ZReLU(aidx%—bid) | a;, b; € 1,...,M}.

=1

I would like to notice that H2 C F°(L = 3, W = 3WW). To make this more obvious we
can rewrite elements of H as follows:

aj

> ReLU(aidz + bid) = )  ReLU (Z (ReLU(z) — ReLU(—z)) + Z 1)

i=1 Jj=1

It's important to notice that the vector of a; and b; don’t uniquely determinate a func-
tion in H.. Yet, if we know that two functions have different breakpoints, then they
must be different. The question is now, in how many ways can we pick W break-
points? The breakpoints will be in {—%|a,be 1,...,M}. We will call C(W) :=
#{—% | a,b € 1,...,M}.

We can draw M different breakpoint, therefore we can do this in (Cw/ )) different ways.

Hence, looking at log-cardinalities, we have that

log #F2(L =3, W =W) > log (Cg)) > log (%)W €N (Wlog %) .

To conclude the proof we use a result of number theory cite some number theory result
that tells us that C(W) ~ W?2. Hence, log #F°(L =3, W = W) € Q (W logW).

Since we have both an upper and a lower bound we can conclude that

log #F(L=3W=W)ecO(WlogW)

Note: before concluding the proof we notice that no properties of the ReLU function
where exploited, hence, the proof also holds for any other activation function. O

Preposition 4 (Scaling with L = 5).
log #F2(L=5W=W) € O(W?
Proof. For the proof of this preposition it is sufficient to prove the upper bound. The

lower bound follows from the fact that the number of realizations must be lower than
the number of networks:

log #F2(L =5W =W) <log#N’ (L =5W=W)c O(W?)

To find an upper bound the proof is more complicated. We start by taking M € N. To
follow the proof, it helps to think that there exists a ¢ such that M = cIV.

12



Step 1: (basis functions) We start by defining M functions:
0 r <2k
(z — 2k)M 2% <& <2k+1
(2k+2—2)M 2k+1<x<2k+2
0 x> 2k+2
Y

5 is

4 is

3 is

2 is

1 is
+ f t y t + + + + —
1 2 3 4 5 6 7 & 9 10 11 12

x\

Figure 3: Example with M = 5 of 3 different v, functions for k =

1,2,5
Now we define another set of M? functions:

or(z) = ReLU(¢y(z) —h+1)  khel,....M

I would like to notice that all the ¢! have breakpoints in different points. This might
not be trivial at first sight, but to get a good intuition one might look at figure 4. Since
by linearly combining continuous piece-wise function one cannot add breakpoints, we

conclude that all ¢} are linearly independent.

N W e Ot

—

1 2 3 4 5 6 7 8 9

10 11 12

T

Figure 4: Example with M = 5 of 4 different ¢ functions

13



Step 2: (realization of the basis) We now want to realize all the ¢} with a neural
network (where the width scales linearly with A). To do so, we start by decomposing
Y in ag, by and c:

n(z) = ReLU(M (z — 2k)) — ReLU(2M (z — (2M + 1))) + ReLU(M (z — (2k + 2)))
= ReLU(Muz — 2Mk) — ReLU(2Mx — 4AMk — 2M) + ReLU(Mx — 2Mk — 2M)

::;;:(m) ::;;:(x) ::;;:(ac)

Then we can write the ¢! functions as:
o (z) = ReLU(ay(x) — bi(z) 4 cp(x) — h + 1)

We now build a network T, (x) that, with a width linear in M/ and a depth of 3, realizes

(
Ty(zr) = AsoReLUo Ay o ReLU 0 Ay = | by(x)
(

Now, we show how we can choose affine transformations A;, A, A3 in such a way that
they realize T ),. To make this more simple we introduce this notation:

* 0,,, indicates an m x n matrix where all the entries are 0
e 1,,, indicates an m x n matrix where all the entries are 1.
* L,, indicates a square lower triangular matrix of 1s of size m. Formally
1 i<y
L.| .= -
Lol {0 i > j

14



AR > RM

-
x

1y Oarn
Onr s 1aa -
Ay(w) = |Opn | o+ [ | = 1
Oarar 1p 1
Oar s 1p _
L1

AQ . R5M — R3M+2

Loy Ogar O Ooar 0o
Ay(z) = Oamar Yarar Yarar Oarar O
Orvnr Yo Yy I 1w
Onvov Ly Omr Oncvr Ongonr

T+ 03p742,1

Now, if we combine A; o ReLU o A; we get:

[ MReLU(z)]
MReLU(z)
2M

2M
AM
AyoReLUo Ay (z) =

AM
1
2

M
If we then look at T, we notice that all the ingredients for it are ready in A;oReLUo 4;.
We need to remember that considering ReLU(z) and z is equivalent since the ay, by, and

¢ functions take the ReLU of the input. One can now understand that we can build
an As, using only —1, 0, 1 as entries, such that A3 o ReLU 0 A; o ReLU 0 A; = T /().

Finally, we notice that we can simply compute ¢, — h + 1, Vk,h € 1,..., M as lin-
ear combination of the T,,(x). Applying another layer, and therefore a ReLU non-
linearity, one could compute any ¢f. However, we need to do so in a smart way,
otherwise, if we realize only one ¢} per node in the next layer we don’t have an M?
scaling in the log-cardinality. The intuitive idea of the next step is to realize together
all the ¢! that have the same h.

Step 3: (the 2" scaling) We start by defining B € {0, 1} >, We then define
M

dp(x) = Z Z Bh,kSDZ(x)-

h=1 k=1

15



Since all the ¢} (z) are linearly independent, we have that
B+# B & dp # 5.

Since B has M? entries, and all the entries can be either 0 or 1, we can draw B in 2M”
different ways.

Step 4: (realization of @) Here we start from Y,(z), we then concatenate other two
layers, and then we can get any ®5(z). Of course the layers we add must depend on
B. The final (5-th) layer is trivial and just sums up all the outputs of the previous one,
the key part is in the second-to-last (4-th) layer.

First, we notice that ReLU o Y,, has no effect since all the entries of Y, are non-
negative. Then we rewrite &5

Op(x) =D > Bupp(r) = Y (@)

We will build the 4-th layer in such a way that the h-th entry will be 1}, (x). A visualiza-
tion of this is in figure 5. To have the h-th node computing 7 (z), we need to rewrite
n(z) in the following way:

M
T) = Z B xop ()
k=1

M
= ByReLU(¢y(x) — h+1)

Y ReLU (Z(Bh () — b+ 1)
= ReLU (Z Bh kak Bh k)bk< ) + Bh,kck(x))) + (—1)h + 1)

To understand why (i) holds, we check that it’s true for z € [2k,2k 4+ 2|Vk =1,..., M.
If v € [2k,2k + 2], then ¢;(z) = 0, k # k. Now, foreach k, we new show that the

16



@B(l’)

Figure 5: Schema of the 2 last layer of ®5(z). The dashed lines from
T/ to the 4-th layer represent a general affine transformation

equality (7) holds in [2k, 2k + 2]

ReLU (Z(Bh,,;w,;(x)) —h+ 1) =ReLU | ) (B, 1¢4(2)) +Buston(z) — h + 1

k=1 bk
NS

J/

L4

= ReLU (Bh,kwk(x) — h -+ 1)

= ReLU (Bystop(z) — h+1) + Y ReLU (B, ;i (x) — h + 1)

k#k

J/

-

=0

M
= B, ;ReLU(yy(x) — h + 1)
k=1

Now, it’s trivial to see that the equality also holds in (in fty, 2) U (2k + 2, 00), since both
the members are 0. Hence, we conclude that (i) is true for any value of x.

Once we have rewritten 1, (z) as above, it’s easy to see that is simply a ReLU function
applied to an affine transformation of T, using only weights in {—1,0,1}.

Now that h-th entry of the 4-th layer is ny(x). It's then trivial to see that the whole
network, which just sums all the note of the 4-th layer, will be ®5(x).

Step 5: (conclusion) We have now managed to build a network for any ®5 with
weights in {—1,0,1} = Q%, depth 5, and width 4. Therefore, we can conclude that

HFLUL =5W =5M) > #{®p | B € {0,1}MM} = 22°,
Hence, looking at log-cardinalities and setting W = 5/,

2
log #F2(L =5W=W) > (%) log2 € Q(W?).
Since we have found the lower bound before, this concludes the proof. O

17



C Scaling with the connectivity

Before starting with the proof of theorem 3 we would like to make two remarks:

* The theorem is proven for b = 0 and a > 2. It’s trivial to generalize for b > 0
and I think it’s not so interesting to generalize for a = 1 (but I still think that the
result holds anyway)

e When we refer to N?(M = M) we require that the nodes are somehow all linked
together. (This is both obvious and reasonable)
Proof of Theorem 3. The proof is done assuming a > 2 and b = 0. (b = 0 is without loss
of generality since b has only to do with scaling).

e Thanks to Preposition 5 we have that log #F°(M = M) € Q(M log M)

e Thanks to Preposition 6 we have that log #N2(M = M) € O(M log M+M log #Q?).
Since in this theorem we are interesting at the scaling behavior with M rather
than with #QY then we can say that log #N2(M = M) € O(M log M) (the sec-
ond term is only O(M))

Since for each network in N?(M = M) there is a realization in F2(M = M), but, on
the other hand, multiple nets of N}(M = M) might have the same realization we have

HFAM = M) < H#NIM = M).
From this it is easy to show that

O(Mlog M)

0 J—
Q(Mlog M) = log #N; (M = M) € ©(M log M).

log #N2(M = M) € {

In the same way one can show that log #F°(M = M) € O(M log M). O

Preposition 5. For a > 2
log #F2(M = M) € Q(M log M)

Proof. The proof is done in 3 steps. To follow the proof more easily keep in mind that
M = ¢V/N for some constant c.

Step 1: (Define )y and look at its subsets)

Qn = {Zijk=2j—3k|i7j,k?=0w--aN_1}

And then we define the set of all interesting subsets
Py :={PCQn|#P < N?}.

18



Note: this is useful since we will find a neural network ®p» with bounded connectivity
for each P € Py

It’s easy to see that #Qn = N? since 2, 3,5 are prime. Now we compute the log-
cardinality of Px:

40O\ O (N
log #Px = log ( N2N > log 7 = N%log N

Where (1) follows from a well known bound for the binomial coefficient: (}) > (%)k

Step 2: (find a distinct neural network ®p for each P € Py with connectivity in the
order of O(N?))

We start by building a skeleton neural network @ like in the next figure:

— weight =1
— weight =2
— weight=3
weight =5
o no bias in this neuron
ebias=1

19



N columns

A
~

input T
“e O O o0 A
2x
e o) Oo———O0——0
22x
o o O——0—0 =
3
()
N2,
e o) O O——0
N1y
O O O———O——0 v
output
O O——0 o O
1
*——O0—0 o o) e OO A
5
° o——0 e o) Oo——-O0——0
52
° o 0 o o O———O0——0 =
3
(7))
5N72
° ‘el 0 o O o) O O———0
5N—1
° O O O O O O O OO v

Note that this network has no output, (& = 0). We will fix this later on.

Furthermore, note that the connectivity of this network is M(®) = 3N + 4N?.

Now we can show that by adding 3 weight to ® we can add a breakpoint in ¢ chosen
from @ n. Let z; ; , be the breakpoint: (dashed line correspond to weight = —1)

20



input T
4 T O o O——O——0
2x
O O (@ e O O
) 22x
j O O (@ e O O
l 2N72x
o
N1y
o
output
O
ko )
ReLU(3 2 — 5Z) — Zijk
1
[ e O O] O O
5)
7 [ 2 O O O (@ e O O
52 5
[ 2 O O O O (@ e O O
5N72
° o o) o o o) Oo—-o0——0
5N71
° o o) o o o ) Oo—-o0——0

Let P = {z .. 2™} 'm < N2 To realize ®p we start from ® and then add break-

points (M), 2(2) . 2(™) one at the time.
Now we can notice 2 properties:

1. M(®p) < CN? for C € N. This is true since each new breakpoint only uses
3 weights and the original ® has around (2N)? weights. (I think therefore that
C = 8, but that is not the point)

2. Since ®p has breakpoints exactly in P, it’s easy to understand that P # P’ <
Op # Op. Hence, # {®p | P € Py} = #Py.

Step 3: (Conclusion)

21



By noticing that {®p | P € Py} C F2(M = CN?) it's easy to see that:
HFU (M =CN?) > #{®p | PPy} =#Py > N?log N

So if we chose M = CN? = N? = % we have shown that:

M M M 1
b — > log/ — = — -
H#HF(M=M) > Clog o =50 (logM+logC) € Q(Mlog M)

Preposition 6.
log #N2(M = M) € O(Mlog M + M log #Q0)

Note: the proof of this theorem is not original since the result is already contained
in the bit encoding of a neural network proposed in Preposition 2.34 of [?]. However,
since the usage of the result is different, I think that rephrasing it here makes it more
clear.

Proof. The proof is done by looking at how many different networks we can choose
from V(M = M) (in particular we look for an upper bound).

Step1: (Node distribution) We know the length of a neural network ® € N2(M = M)
must be less than or equal to M. So let N;,7 =1, ..., M denote the number of nodes in
the i-th layer. (we will choose IV; = 0 for i > L if ® has a length L).

It's very easy to see that 0 < N; < M Vi =1,..., M. Hence:
(N1,...,Ny),N; € {0,..., M} canbe drawn in (M + 1) different ways

(This bound can be made tighter (A*) since we also know that Zf‘i 1 Ni < M, but it
doesn’t change the result of the proof since Step 2 is the dominant term)

Step 2: (Weights positioning) Once we fix the positioning of the Nodes (Ny, ..., Ny)
we want to look at how many ways we can choose which weights are non-zero. We
will say that each weight links any couple of nodes, and we will denote bias as weights
from one node to itself. (We are considering many configurations which are not legal
for ® € N2(M = M), but this is not a problem since we are looking for an upper
bound).

Since each weight can link any couple of nodes and the total number of nodes is < M
we have that there are M/? ways we can draw a weight positioning. Now we need to
draw M of those weights:
M2
all possible weights positioning can be drawn in ( M ) different ways
Now, we use a well known bound for the binomial coefficient,

M
()= () e

22




Step 3: (Weights values) Now we need to look at how many values can those weights
actually have. Since each weight can be drawn in #Q? different ways, in total, all
weights can be drawn in (#Q%)™ different ways.

Step 4: (Conclusion) By putting all together, ® € N(M = M) can be drawn in less
than
(M + D)MeM MM (#Q2)M different ways.

Hence we can bound the log-cardinality, we get
log #N2(M = M) < M log(M+1)+M+M log M+M log #Q° € O(M log M+M log #Q°).

]

D Non ReLU degeneration proof

In this appendix we want to show that for any activation function p for which theorem
1in [1], then there is no degeneration phenomenon. To do so we start by reintroducing
some notation from paper and restate the theorem that we are interested in.

Definition 6 (No-clone set). We define N°(L = L,W = W) to be the set of all network in
NY(L = L, W = W) that respect these two additional conditions

* For any layer (, the matrix W, does not have a zero column or a zero row

* For any layer ¢, there cannot be two rows 1, j such that:

(VVZ',la R Wi,Dg_laei) = (VVj,lv s 7VVj,Dg_17 0])

We now can state the theorem that interests us

Theorem 4. [Uniqueness theorem from [1]] Let p be a piece-wise C* function such that:

delfe ' ® | Iflsve = sup / F(2)g! (2)dr < oo
peC;(R)

||<PHL°<>(R) R

Let € > 0. Then there exists a function o : D — C,D D R,0(R) C R such that all networks
in N2(L = L,W = W), together with o activation function, excluding permutation of nodes,
realize a unique function.

We now show that there is no degeneration phenomenon for L > 4, but this is enough
since, from preposition 2 and preposition 3, we already know that there is a degener-
ation for L = 2,3 for any activation function.

Definition 7 (Non ReLU realization family).
FoA=p, L=LW=W):={{(®) |2 eN(L=LW=W)}

23



Theorem 5 (Non ReLU). Let p be an activation function for which theorem 4 holds. Then,
forany L > 4, we have that

log #F(A=p,L=LW=W)cOW?

Proof. To prove this theorem we build a family of networks which are inside F.(A =

p, L =L, YW = W) and for which we can prove that they are all unique using theorem
4.

Step 1: (b vector of vectors) We start by defining
B:={{b,....bw} | b € {0, 1} b; #£b; Vi,j=1,....W}
b; can be draw in 2V different ways, then the number of elements in B is
oW
#= ()
Since we need to count in how many ways we can draw W different b vectors from
{0,1}". Now we can use a bound for the binomial coefficient to show

oW 2\ "
log #B = log <W> > log (W) = W(log 2" —log W) = W?log 2—W log W € Q(W?).

Step 2: (building the network) Without loss of generality we assume thata = 1,b =
0, hence we can choose weights in {—1,0,1}. We build a depth-4 network for any
{b1,...,bw} € B. We write ®,, _,, = Asopo Azopo Asopo Ay A; will be the only
one that depends on {by, ..., by }.

AR > RW

1 0
Ay(z) =[] z+ |:

1 0
Ay RV 5 RW

1 1 : 0
As(z) = x+

0

1 1 0
A RV 5 RW

o7 0

by 0

bl 0
A RY SR
Ag(z) =1 1z+0



Now, we can’t say that all of those netyvorks have unique realizations since A; has
repeated rows, hence ®;, 4, isnotin N (£ =4, W = W). But we can modify A, and
A, in such a way that ®,, _;,, doesn’t change, but we have unique rows.

.....

AliR%R
Ay :R - RY
1 0
- 2 0
2(1’ = . xr—+ |,
M 0

We here notice that
AyopoAi(z) =

Wo()
= Ayo po /11(:1:)

Step 3: (conclusion) Now, we know that all networks ® 5 are unique, since they can
be rewritten in a way where we can use theorem 4. Furthermore, we know that the
log-cardinality of such networks is Q(1/2). Now, since @ are all inside F2(A = p, L =
4, W = W), we have that

log #F2(A=p, L =4, W =W) > log#B € Q(W?).
We can than simply count the number of parameters of such network to show that
log #F2(A=p,L=4,W=W)ec O(W?).

Having both an upper and a lower bound, the proof is concluded O

25



